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Abstract

Background: The peak shift model predicts that the age-profile of a pathogen’s prevalence depends upon its transmission
rate, peaking earlier in populations with higher transmission and declining as partial immunity is acquired. Helminth
infections are associated with increased immunoglobulin E (IgE), which may convey partial immunity and influence the peak
shift. Although studies have noted peak shifts in helminths, corresponding peak shifts in total IgE have not been
investigated, nor has the age-patterning been carefully examined across populations. We test for differences in the age-
patterning of IgE between two South American forager-horticulturalist populations and the United States: the Tsimane of
Bolivia (n = 832), the Shuar of Ecuador (n = 289), and the U.S. NHANES (n = 8,336). We then examine the relationship between
total IgE and helminth prevalences in the Tsimane.

Methodology/Principal Findings: Total IgE levels were assessed in serum and dried blood spots and age-patterns
examined with non-linear regression models. Tsimane had the highest IgE (geometric mean = 8,182 IU/ml), followed by
Shuar (1,252 IU/ml), and NHANES (52 IU/ml). Consistent with predictions, higher population IgE was associated with steeper
increases at early ages and earlier peaks: Tsimane IgE peaked at 7 years, Shuar at 10 years, and NHANES at 17 years. For
Tsimane, the age-pattern was compared with fecal helminth prevalences. Overall, 57% had detectable eggs or larva, with
hookworm (45.4%) and Ascaris lumbricoides (19.9%) the most prevalent. The peak in total IgE occurred around the peak in A.
lumbricoides, which was associated with higher IgE in children ,10, but with lower IgE in adolescents.

Conclusions: The age-patterning suggests a peak shift in total IgE similar to that seen in helminth infections, particularly A.
lumbricoides. This age-patterning may have implications for understanding the effects of helminths on other health
outcomes, such as allergy, growth, and response to childhood vaccination.
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Introduction

Age-related epidemiological patterns are thought to result from

complex interactions between parasite life cycle, exposure to

infection, and host-immunity [1,2]. Helminth infections show

characteristic age-patterning, peaking around puberty and then

declining during adulthood [3–5]. However, this pattern varies

with infection prevalence and intensity, tending to both peak and

decline earlier in populations with higher rates of transmission.

This ‘‘peak shift’’ is thought to result from the interaction between

the rate at which new individuals are infected and the rate at

which partial immunity is acquired [1,2]. According to this model,

when transmission is high infection occurs more quickly, leading to

a higher prevalence at a younger age. However, earlier infection

also leads to an earlier acquisition of immunity, leading to a

decline in prevalence following the peak.

Although studies have found age-patterns in helminth preva-

lences consistent with this hypothesis, few studies have examined

whether the age-patterning of immune responses follows similar

patterns. Those studies that have examined the age-patterning of

immune responses have generally focused on parasite specific

immunoglobulins (IgG, IgA, IgM, and IgE) [6–11]. These have

shown age-patterns that resemble the age-specific prevalences of

parasites. However, in addition to specific responses, helminth

infections are associated with a general shift in the host immune

system towards a TH2-biased phenotype, characterized in
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particular by increased production of total IgE. Although specific

responses are thought to participate in protection against infection

and thus the generation of peak-shift patterns, an examination of

total IgE levels is also critical for understanding the effects of

helminths on health and immune function. Due to stimulation of

TH2 responses, total IgE is likely to represent the total burden of

multiple helminth species infection better than species specific

immunoglobulins. Like specific IgE, total IgE levels are elevated in

infected individuals and fall with treatment [12,13], and have been

shown to correlate with specific IgE for Ascaris lumbricoides and T.

trichiura [14]. However, total IgE levels in heavily parasitized

individuals remain elevated compared to individuals in industri-

alized countries for substantial periods of time [15], suggesting

persistent changes in host immune function.

Mounting an immune response is energetically costly, necessi-

tating reductions in competing life history demands, including

growth, reproduction, and survival [16–17]. Higher total IgE

levels are associated with poorer growth and shorter adult stature,

suggesting a trade-off between growth and investment into

immune response [18]. Moreover, the shifting of immune function

towards a TH2 phenotype may reduce TH1 responses, decreasing

the effectiveness of vaccines or increasing susceptibility to viruses

and bacteria [19–21].

These effects may depend, in part, on the timing of exposure, as

exposure to helminths during critical periods may bias the

development of immune function or a child’s growth trajectory.

Helminths infect more than one seventh of the world’s population,

and given the peak-shift pattern, a disproportionate number of

those infected are schoolchildren [22]. As a consequence, age-

patterns in helminth infection and immune response are likely to

have significant consequences on growth and development.

Although several studies have reported that IgE increases

quickly in the first 5–10 years of life and then levels off [23,24], few

studies have carefully examined the age-patterning of total IgE

and we know of no published studies that have compared age-

patterning in IgE across multiple populations. As a marker of

helminth infection and TH2-biasing of T-cell responses, an

understanding of the age-patterning of total IgE is important for

understanding the broader consequences of helminth infections on

life history parameters. The current study describes in detail the

age-patterning of IgE levels in three populations. These include

data from the United States collected by the National Health and

Nutrition Examination Survey 2005–2006 (NHANES) and data

from two populations of South American forager-horticulturalists:

the Tsimane of Boliva and the Shuar of Ecuador. First, we test for

predicted associations between population mean IgE level and the

age-pattern of IgE. Second, using Tsimane data we examine the

relationship between age-patterning in IgE and age-patterning in

helminth infections.

Methods

Study Populations
Shuar. Shuar are Amerindians from the Amazonas region of

Ecuador [25,26]. Shuar live across a wide range of circumstances,

but a large portion of the population continues traditional

subsistence based on horticulture, hunting, and fishing.

Approximately 40% of Shuar children are stunted, a higher

prevalence than is found in other indigenous and non-indigenous

children living in the same area [27]. Although we know of no

studies examining helminth infections in the Shuar, recent studies

report infection rates of around 50% in other Amazonian

Ecuadorian populations, with Ascaris the most prevalent parasite

[28,29]. Shuar data were collected as part of the Shuar Life

History Project (www.bonesandbehavior.org/shuar) in a village

that has been previously described [18].

Tsimane. Tsimane are forager-horticulturalists that live

along the Maniqui River in lowland Bolivia. Tsimane subsist

primarily on cultivation of plantains, rice, manioc, and corn, as well

as hunting, fishing, and gathering. Tsimane show high levels of

inflammatory markers, such as C-reactive protein [30–32].

Helminth infections are highly prevalent, with hookworm (Necator

americanus or Ancylostoma duodenale) being the predominant parasite,

infecting between 44% and 76% of children [33,34]. Between 40–

50% of children are stunted [35,36]. The data for this study were

collected as part of the Tsimane Health and Life History Project

(http://www.unm.edu/,tsimane/), in sixteen villages representing

a range of environmental and economic situations (interior forest,

riverine, acculturated, non-acculturated).

National Health and Nutrition Examination Survey

(NHANES). NHANES is a large-scale, national survey of

health, nutrition, and social factors conducted by the National

Center for Health Statistics and Center for Disease Control. This

study uses data from the NHANES 2005–2006 dataset (http://

www.cdc.gov/nchs/nhanes/nhanes2005-2006/nhanes05_06.htm).

The sample includes 8,336 individuals, 88% percent U.S. citizens,

52% percent female, 27% Mexican-American, 36% Caucasian,

26% African-American, and 11% other ethnicities.

Ethics Statement
For Shuar, permission to conduct the study was first obtained

from the Federacı́on Interprovincial de Centros Shuar (FICSH),

the elected representational organization for Shuar affairs. Second,

permission was obtained from elected village leaders. Third, a

village meeting was held in which a village-level consent form was

read aloud, the study explained, questions answered, and a

community decision reached about whether to allow the study.

Individuals were informed that they could choose not to

participate, participate only in individual portions of the study,

or participate in the full study. At the time of data collection,

individual oral consent was obtained, with individuals able to opt-

in or out of individual components of the study (e.g., to provide

blood spots or not). For subjects under age fifteen (the local age of

consent) both parental consent and child assent were obtained.

Oral consent was used for two reasons: 1) many Shuar are non or

Author Summary

Infection with parasitic worms, known as helminths, alters
the immune system, causing individuals to produce high
levels of a type of antibody known as immunoglobulin E
(IgE). IgE is typically very low in western populations, but is
many times higher where helminth infections are com-
mon, particularly indigenous populations in South Amer-
ica. Helminths infect more than one seventh of the world’s
population. Since helminths tend to infect people at
younger ages in areas where they are more common, a
disproportionate number of those affected are schoolchil-
dren. In this paper we examine IgE levels in two
indigenous South American groups in comparison to
levels in the United States. In these groups we find that IgE
levels are not only higher, but that they also reach their
highest levels at earlier ages in more infected populations.
This finding is important since effects on immune function,
including IgE production, may have additional conse-
quences if they occur at young ages, changing the
development of allergy and asthma, growth, and response
to vaccines.
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semi-literate or have only a few years of schooling, and 2) many

Shuar are suspicious or uncomfortable with signing documents

due to a history of territorial land disputes and wariness about

signed documents leading to ownership conflicts. An independent

bilingual Shuar village leader, nurse, FISCH official or assistant

was present to translate as needed during group and individual

consent and study procedures. The study and consent procedures

were approved by the Institutional Review Board (IRB) of the

University of Oregon.

For Tsimane, informed consent was obtained at three levels: 1)

from the Gran Consejo Tsimane, the local Tsimane government

organization that represents Tsimane interests and oversees all

projects, 2) community officials and participants in village

meetings, and 3) individual consent during medical visits and

before each procedure. After explanation of a formal protocol by

bilingual Tsimane assistants, consent forms were signed for literate

participants, and verbal approval with fingerprint signature given

for non-literate participants. Tsimane consent procedures were

approved by the IRBs at the University of New Mexico, University

of California, Santa Barbara and the University of Southern

California.

Blood Collection and Analysis
Shuar. Shuar samples were collected following standard

procedures to collect dried blood spots [37]. IgE levels were

determined by ELISA at the University of Oregon, following a

commercially available protocol (Bethyl Labs, Inc.: #E80-108 and

#E101) adapted for use with blood spots [38]. Blood spot

collection and IgE analyses have been previously described [18].

Tsimane. Tsimane blood samples were collected by

venipuncture during annual medical exams conducted by

Bolivian physicians. Serum was frozen in liquid nitrogen for

transport to New Mexico. Two rounds of samples were collected.

The first 223 samples were collected in 2004–2005 and analyzed

by TriCore Laboratories (Albuquerque, NM) for total IgE

(catalog: L2KIE6) using an Immulite 2000 (Siemens Corp;

Deerfield, IL). An additional 700 samples were collected in 2007

and analyzed in the laboratory of JJS at the University of Oregon

using the same commercial ELISA kit used for Shuar samples

(Bethyl Labs, Inc.: #E80-108 and #E101). Of these, 91 were

repeated measures for individuals included in the first batch of

samples. These samples were excluded so as not to confound

longitudinal and cross-sectional data. After excluding these cases,

the first and second samples did not differ in geometric mean IgE

(comparison of log transformed IgE: t = .462, df = 830, p = .644).

NHANES. NHANES samples were collected by venipucture

by trained phlebotomists. Determination of total IgE was done using

the ImmunoCAP 1000 system (Pharmacia Diagnostics) by the

Department of Pathology Immunology Laboratory at Elmhurst

Memorial Hospital, Elmhurst, IL. Details can be found at http://

www.cdc.gov/nchs/data/nhanes/nhanes_05_06/al_ige_d_met_

specific_ige_total_ige.pdf.

Comparability of Blood Samples. A handful of studies

have compared IgE in dried blood spots to IgE measured in serum

and found results to be virtually identical [39,40]. Additionally, the

ELISA procedure used to determine blood spot IgE in this study

has been validated against controls with known IgE levels [38]. To

verify the comparability of IgE obtained from dried blood spots

with that obtained from serum, six matched blood spot and serum

samples were analyzed using both methods. The values obtained

from dried blood spots were highly correlated with the values from

serum (r = 0.98, p,.001). Blood spot values were ,3% higher.

Using linear regression, the following conversion factor was

obtained to convert dried blood spot values into serum values

prior to other analyses: IgEserum = 0.9656IgEDBS23.458 (IU/ml).

Fecal Analysis
Tsimane fecal samples were analyzed using two methods. From

2004 to 2008 fecal samples were analyzed for the presence of

helminth eggs and larvae by direct identification on wet mounts.

As described in greater detail elsewhere [33], duplicate mounts

were prepared with 0.9% saline solution and iodine solution,

respectively, and examined at 100x and 400x for helminth eggs

(hookworm, A. lumbricoides, and T. trichiuris), and larvae (S.

stercoralis). Beginning in 2007, fecal samples were also preserved

in 10% formalin solution following direct identification, and later

quantitatively analyzed using a modified Percoll (Amersham

Pharmacia) technique [41].

Of the two methods, the Percoll technique is more sensitive,

producing slightly higher detection rates than direct identification

(59.4% vs. 51.9% infected). These differences may be due to the

greater efficiency of the Percoll technique in detecting eggs in

fibrous stools and at low-intensities [41]. However, for the present

study the differences between the two methods were not

qualitatively great enough to justify using only data produced by

one method or the other. We therefore aggregated data from the

two methods, coding individuals as either infected or not infected if

helminths were detected by either method. In total 1,495

individuals had Percoll results, with the remaining 3,610 having

only direct results.

Age Estimation
Birth dates accurate to the month were available from health

clinic and school records for most Shuar children. For Shuar

adults, birth dates on government identification were cross-

checked with extensive genealogical information collected from

multiple informants. Tsimane genealogies were collected during

demographic interviews done on individuals over age 18

(n = 1,098). Tsimane ages were estimated based on written

records, such as those kept by Catholic missionaries, demographic

interviews with independent cross-checking of genealogies and

reproductive histories with multiple informants, and the use of

photographs of people with known ages [42].

Figure 1. Distribution and geometric mean value of IgE
antibody levels in three populations. Density plots were
generated with a Gaussian smooth with bandwidth 0.5.
doi:10.1371/journal.pntd.0001218.g001

Evidence for a Peak Shift in IgE

www.plosntds.org 3 June 2011 | Volume 5 | Issue 6 | e1218



Data Analysis
Prior to data analysis, IgE values were converted into

international units (1 IU = 2.4 ng/ml). IgE is log-normally distrib-

uted in all three populations (Figure 1), so values were natural log

transformed (lnIgE) before all analyses. For t-tests, reported means

are geometric means calculated by taking the exponential of the

mean log values used in the t-test. Descriptive statistics and t-tests

were done in PASW Statistics 18.0 (formerly SPSS Statistics, SPSS

Inc.). All other analyses were done in R 2.10.1 (www.r-project.org).

Generalized additive models (GAM; [43,44]) were used to

examine the non-parametric age pattern of IgE levels for each

population. Models were fit with the gam procedure in package

mgcv using thin plate regression splines [45,46]. Since the cases in

each population were not evenly distributed by age, initial basis

knots were specified for each population based on even ten-

percentiles of the age distribution, allowing knots to be spaced with

an equal number of cases between them (Figure 2). Apart from the

basis knots, smoothing parameters were generated automatically

according to gam defaults [45]. GAM models included an

intercept, a sex factor, a spline for age, and a spline for age-by-

sex interaction.

In initial models, similar IgE levels at birth were predicted

among Shuar and NHANES, with the Shuar model predicting IgE

of 7 IU/ml for females and 9 IU/ml for males, and the NHANES

model predicting 15 IU/ml for females and 21 IU/ml for males.

However, due to the relatively low number of Tsimane under age

five, initial Tsimane models were essentially straight lines, with

peak IgE predicted at birth. A number of studies have found

Figure 2. Models for IgE by age in Tsimane, Shuar, and NHANES. A) Generalized additive models for Tsimane (top, blue), Shuar (middle,
green), and NHANES (bottom, yellow). Points show the mean lnIgE value for males (triangles) and females (circles) between knots specified in the
initial model basis (vertical lines), while lines indicate the thin plate regression spline for each sex. For all three populations males have the higher fit
line. Numbers indicate the estimated ages at which the initial peak in IgE occurs. Shading indicates local 95% confidence intervals for the spline, with
dark areas indicating overlap between male and female confidence intervals and light areas indicating no overlap. B) Ordinal step models and non-
linear regression models. Ordinal model parameters were entered in stepwise fashion according to AIC minimization, resulting in the final models.
Numbers indicate a significant transition at greater than the age given, symbols the significance of the parameter in the model: t p#0.10, * p#0.05,
** p#0.01, *** p#0.001. Dashed lines indicate the model fits for non-linear models, including the population specific models in Table 3 (red), and the
interaction models in Table 4 (Model 1 in green, Model 2 in brown, and Model 3 in blue). For simplicity only the models for females are shown.
doi:10.1371/journal.pntd.0001218.g002
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extremely low IgE levels at birth (,1 IU/ml) [47-50,23,51,52],

even in infants of mothers with helminth infections and high IgE

[53,54]. Given the convergence of the other two models and these

previous findings, we used dummy cases with age zero and IgE

equal to 15 IU/ml to anchor Tsimane models to a similar

intercept at birth. Dummy cases were included in GAM models

but not in any other statistic.

GAM models with a binomial logit-link function were also used

to estimate odds-ratios for Tsimane helminth infection by age.

Associations between helminth infection and IgE levels were

estimated in linear models controlling for infection with other

helminths, sex, and age.

In addition to GAM, two other methods were used to verify age

shapes and compare populations. In the first, a stepwise linear

regression was used to identify critical age-related changes in lnIgE

for each population. Dummy variables were coded for each

unique age indicating whether a case was greater than the given

age (e.g., [55]). Starting from a model with only an intercept and

sex term, stepAIC (package MASS) was used to enter and remove

age variables to minimize model AIC [56].

For the second test we constructed non-linear models composed

of linear segments linked together, with model terms representing

the point at which the linear segments are stitched together. In this

model, model terms directly represent critical ages, such as the age

at which the model peaks, so differences in critical ages between

populations can be tested using population interaction terms. The

basic model is:

ln IgEð Þ~b0zbSSexz
X3

i~1

bi

Age{ai{1

1ze{10 Age{ai{1ð Þ

" 

| 1{
1

1ze{10| Age{aið Þ

 !
z

ai{ai{1

1ze{10 Age{aið Þ
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Where a1, a2 and a3 are the ages at which the slope changes and

a0 equals zero, b1, b2, and b3 are the slopes for the segments, and

additional terms b0 and bs represent the intercept at age zero and

sex effect, respectively. Three logistic functions serve to ‘‘turn-on’’,

‘‘turn-off’’, and maintain the value reached at each age transition.

The models were fit such that a1 is the initial age where rapid

increases in IgE level out, a2 is the age at which IgE peaks for the

population, and a3 is the age at which IgE reaches mean adult

levels. Models were solved using nls (package stats) using the nl2sol

algorithm. Initial values specified based on GAM regressions and

only individuals under age 50 were used for modeling.

Results

Age-Pattern of IgE
Of the three populations, Tsimane had the highest IgE levels

(geometric mean = 8,182 IU/ml), followed by Shuar (1,252 IU/

ml), and NHANES (52 IU/ml) (Table 1). IgE distributions were

skewed but largely normalized by log-transformation (Figure 1).

All three groups differed from one another in pair-wise

comparisons (all t-test p-values ,.001 after Bonferroni correction).

In all three populations, males had higher IgE than females.

NHANES males had IgE levels 60% higher than females (65.9 vs.

41.3 IU/ml, t = 14.08, p,.01), while Shuar males had IgE values

29% higher than Shuar females (1,457 vs. 1,129 IU/ml, t = 2.15,

p = .03), and Tsimane males had levels 16% above females

(8,720 vs. 7,527 IU/ml, t = 2.73, p,.01).

Upon initial visual examination of the data, age patterns were

observed to be non-linear. We therefore used thin plate regression

splines in GAM models to examine the age patterning of IgE

(Figure 2A). Age terms were significant in all models (Tsimane:

edf = 10.94, F = 43.15, p,.001; Shuar: edf = 7.73, F = 5.35,

p,.001; NHANES: edf = 8.93, F = 24.74, p,.001). Despite

differences in level, all three populations had similar age-related

IgE profiles, characterized by a rapid increase before age five, a

peak in the juvenile or adolescent period, and a decrease into

adulthood. However, a number of features differ between

populations. Principal among these is the age at which IgE

initially peaks. Tsimane IgE peaked at 7.3 years for males and 7.2

years for females. Shuar IgE peaked at 10.2 for both sexes.

NHANES IgE did not peak until age 16.9 for males and 16.4 for

females. Fitting a linear model to the three population points for

each sex suggested that for males the peak age decreases by 1.98

Table 1. Sample sizes and IgE by population and age category.

Tsimane Shuar NHANES

Ages N Geometric Mean N Geometric Mean N Geometric Mean

1–5 11 7,073 (1,078–46,426) 50 1,017 (127–8,124) 938 34 (2–706)

6–10 79 9,755 (1,989–47,847) 102 1,658 (308–8,920) 774 61 (3–1,288)

11–15 51 7,798 (1,788–34,008) 35 1,307 (172–9,927) 1,110 64 (3–1,380)

16–20 38 7,820 (2,411–25,364) 12 1,055 (109–10,228) 1,110 69 (3–1,453)

21–30 82 8,068 (1,641–39,670) 22 882 (64–12,205) 931 53 (2–1,131)

31–40 90 7,887 (1,594–39,031) 36 1,074 (178–6,491) 778 47 (3–882)

41–50 219 8,321 (1,797–38,534) 17 1,024 (167–6,289) 763 50 (2–1,058)

51–60 119 7,861 (1,385–44,612) 5 445 (78–2,547) 598 49 (3–763)

61–70 82 8,018 (1,534–41,916) 5 1,738 (182–16,623) 615 54 (2–1,319)

71–80 48 9,037 (2,590–31,537) 3 2,327 (651–8,311) 427 39 (2–863)

81–90 12 5,068 (620–41,428) 2 1,767 (160–19,485) 292 41 (2–1,028)

Total 831 8,182 (1,691–39,582) 289 1,252 (172–9,118) 8,336 52 (2–1,116)

Geometric mean values are in IU/ml. Values in parenthesis are plus or minus two standard deviations for log transformed values: em62*s, where m is the mean of ln(IgE)
and s is the standard deviation of ln(IgE).
doi:10.1371/journal.pntd.0001218.t001
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years for every one unit increase in population mean lnIgE

(t = 18.40, p = 0.04), while for females the peak age decreases by

1.76 years per unit increase in lnIgE (t = 25.25, p = 0.03).

We next used stepwise linear regression with ordinal age

variables to identify ages at which important transitions in IgE

level occur and to test the significance of these changes (Figure 2B).

Tsimane transitions included an increase at age three (b= 1.06,

t = 1.90, p = 0.06) followed by a decrease after age nine

(b= 20.21, t = 22.26, p = 0.02). For Shuar, there were significant

increases after age two (b= 1.07, t = 2.10, p = 0.04) and age three

(b= 1.18, t = 3.75, p,0.01), and a significant decrease after age

eleven (b= 20.41, t = 23.59, p,0.01). In the NHANES sample

increases were present in the model after age one (b= 0.48,

t = 3.82, p,0.01), age three (b= 0.22, t = 1.60, p = 0.10), age four

(b= 0.27, t = 1.90, p = 0.05), age six (b = 0.15, t = 1.67, p =

0.10), and age fifteen (b= 0.13, t = 2.00, p = 0.04), with a decrease

after age eighteen (b= 20.19, t = 22.79, p,0.01).

Since neither of these models directly tests for differences

between populations or allows for the comparison of shape

differences in age curves or peaks, we devised a non-linear

modeling procedure in which four linear segments are used to

model the age profile (Figure 2B). These models include three ages

points that correspond to the point at which the rapid increases in

early life levels off (a1), the age at which IgE peaks in the

population (a2), and the age at which IgE reaches adult levels after

the peak (a3). Three slopes (b1–3) describe the change in IgE

between age points (birth – a1, a1 to a2, and a2 to a3). A sex term

accounts for the difference between males and females (bs).

Models were first fit for the three populations independently

(Table 2). Model parameters conformed well to predictions from

GAM models, with peak ages (a2) of 8.2, 10.0, and 17.9 predicted

for Tsimane, Shuar, and NHANES respectively. The ages of

initial slope change and final adult level also corresponded to peak

ages, with both ages earliest in Tsimane and latest in NHANES.

Moreover, all model parameters were highly correlated with IgE

levels (Figure 3). Age terms, initial slopes from age zero, and sex

differences all correlated with mean log IgE (a1: r = 21.00,p,0.01;

a2: r = 20.98, p = 0.13; a3: r = 21.00,p = 0.01; b1: r = 0.99,

p = 0.02; bs: r = 20.99, p = 0.09), while the increase between the

first peak and the final peak, and the decrease from the final peak to

adult levels correlated with untransformed population geometric

mean IgE (b2: 1.00, p = 0.06, b3: 21.00, p,0.01).

To compare populations on these terms we first attempted to fit

models with population interaction terms for each parameter.

However, this model, with 21 parameters, was too complex for the

model algorithms and the data available, and failed to fit. Instead

we simplified the models based on the relationship between model

parameters and population mean IgE levels. In the first of these

models we included parameter by population IgE interaction

terms (Table 3, Model 1). This model verified interactions between

population IgE and all model parameters, with each one unit

increase in log IgE associated with a 0.37 year decrease in the age

of the initial slope change, a 1.70 year decrease in the age of peak

IgE, and a 4.10 year decrease in the age at which levels dropped to

adult mean values. The initial rate of increase in IgE was also

significantly related to IgE mean levels indicating bother faster and

earlier acquisition of high IgE in the Tsimane and secondarily the

Shuar.

In the second, third, and forth models we tested population

differences in the ages at which slopes change, using population

factor terms rather than interactions with population IgE. In

Model 2 all three ages were left independent and the Shuar were

used as a contrast group, since they lie between Tsimane and

NHANES. In this model NHANES a1 and a2 were significantly

Table 2. Non-linear model parameters by population.

Population Parameter Estimate SE t-value p

NHANES b1 (Initial Slope) .21 .02 13.57 ,.001

b2 (Second Slope) 1.4361022 9.0961023 1.58 .115

b3 (Post-peak Decline) 24.2461022 1.8361022 22.32 .021

a1 (Age of slope change) 5.33 .52 10.21 ,.001

a2 (Age of peak) 17.85 1.56 11.41 ,.001

a3 (Age adult level reached) 25.55 2.52 10.13 ,.001

bS (Male vs. Female) .44 .04 11.95 ,.001

Shuar b1 (Initial Slope) 1.15 .09 12.62 ,.001

b2 (Second Slope) 2.7361022 5.0461022 .54 .588

b3 (Post-peak Decline) 28.2561022 8.6461022 2.96 .340

a1 (Age of slope change) 3.91 .36 10.94 ,.001

a2 (Age of peak) 9.99 3.13 3.19 .002

a3 (Age adult level reached) 15.94 4.29 3.72 ,.001

bS (Male vs. Female) .22 .11 2.02 .044

Tsimane b1 (Initial Slope) 1.78 .23 7.86 ,.001

b2 (Second Slope) .26 .09 2.86 .004

b3 (Post-peak Decline) 2.33 2.20 2.15 .882

a1 (Age of slope change) 3.06 .53 5.82 ,.001

a2 (Age of peak) 8.21 2.85 2.88 .004

a3 (Age adult level reached) 9.92 6.18 1.61 .109

bS (Male vs. Female) .15 .06 2.30 .022

doi:10.1371/journal.pntd.0001218.t002
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later than Shuar ages, and a3 was later but with marginal

significance. Although all three Tsimane ages were early than

Shuar ages, none were significantly so, although all three were

significantly earlier than NHANES ages when the model was run

with NHANES as the contrast group (not-shown). Given the

strong correlation between all three ages and mean IgE levels, we

suspected that multicollinearity between terms might be reducing

parameter significance. We therefore examined how a1, a2, and a3

might be included as functions of a single age term. By fitting

linear models to the parameters in Table 3 we found that

a1,1.47+a260.22, and a3,0.90+a261.50. We used these terms

in Model 3, removing a1 and a3. In this model with a single age

term to describe the shape, ages in both Tsimane and NHANES

were significantly different from Shuar ages, with the overall age

shape shifted earlier in Tsimane and later in NHANES.

Tsimane Age-Pattern of Helminth Infection
Overall, 57% of Tsimane participants were infected with at least

one helminth species, with hookworm (45.3%) and A. lumbricoides

(19.88%) the most prevalent, and S. stercoralis (5.6%) and T. trichiura

(3.2%) less common (Table 4). In order to compare the IgE age-

pattern with helminth infection patterns, we examined likelihood

of helminth infection by age in the Tsimane sample using logistic

GAM models (Figure 4). By sex the only significant difference was

in A. lumbricoides infection, with women being more likely to be

infected (22% vs. 18%, x2 = 15.5, p,.001). By age, the odds-ratio

of hookworm infection is highest in adults over age 45, but also has

a small peak at age 12.8. In contrast, the odds-ratio for infection

with A. lumbricoides peaks sharply at age 8.1 and then declines,

mirroring the IgE age-pattern more closely. The odds-ratio for

infection with S. stercoralis peaks somewhat later, around age 24.9.

The odds of T. trichiura infection is essentially flat with respect to

age, reflecting the low prevalence of T. trichiura. Overall, the odds-

ratio for having any type of helminth infection peaks at age 11.1

and then declines until age 45, at which point it increases again.

Odds-ratios closely mirror actual prevalences by age group

(Table 4). For infected individuals we also examined whether

egg/larva burden showed age-patterning. The only significant

age-pattern was a slight decline in hookworm burden with age up

to about age thirteen (not shown). Other egg/larva burdens did

not show age-patterning independent of changes in detection

prevalence.

Association between Helminth Infection and IgE Levels
We examined the association between helminth infection and

IgE levels in our Tsimane sample using regression models to

control for co-infection status, and with the sample divided by age

group (Figure 5). Hookworm infection was significantly associated

with higher IgE levels in 11–20 year-olds (b= 0.44, t = 2.85,

p,0.01), individuals over forty (b= 0.25, t = 3.35, p,0.01), and in

the overall sample (b= 0.23, t = 4.08, p,0.01). A. lumbricoides

infection was significantly associated with higher IgE levels in

individuals #10 years-old (b= 0.41, t = 1.96, p = 0.05), but with

significantly lower IgE levels in 11–20 year-olds (b= 20.45,

t = 22.45, p = 0.02). Although non-significant, T. trichiura infection

showed a pattern similar to A. lumbricoides in those 10 and younger

(b= 0.84, t = 1.41, p = 0.16). S. stercoralis was positively associated

with IgE levels only considering the overall sample (b= 0.32,

t = 2.24, p = 0.03).

From the total sample, 459 individuals had IgE levels and full

Percoll egg/larva counts. Of these, 195 were positive for

hookworm, 89 for A. lumbricoides, 18 for S. stercoralis, and 16 for

T. trichiura. Examining infected individuals only, egg/larva counts

were not significantly correlated with lnIgE, either in the overall

sample or with the sample dived by age.

Discussion

We report on the age patterning of IgE in three populations:

U.S. residents, Ecuadorian Shuar, and Bolivian Tsimane. The

highest known IgE levels are found among lowland South

American populations [18]. Tsimane IgE levels fit this pattern

and resemble the levels of other South American groups with low

levels of market integration (e.g., [14,57,58]). Tsimane levels are

significantly higher than typical values in the United States, even

for individuals reporting high levels of allergic symptoms (based on

NHANES data, analysis not shown). In contrast, despite

inhabiting a similar neotropical environment, Shuar display lower

IgE, resembling other South Americans living in rural areas

[12,13,59]. However, Shuar IgE was also significantly higher than

NHANES values.

Although many studies have reported elevated IgE levels in

populations infected with parasites such as helminths and malaria,

very few have carefully characterized the age-patterning of IgE,

Figure 3. Association between model parameters and popula-
tion geometric mean IgE levels. The upper panel shows fits
between age parameters and mean log IgE by population. The lower
shows fits between slope parameters and geometric mean IgE by
population. Note that the fit for B1 is linear with regard to log IgE, but is
shown on the lower graph due to the parameter scale. Correlation
coefficients for all parameters are given in the text.
doi:10.1371/journal.pntd.0001218.g003
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and none that we are aware of has tested for a peak shift. A

number of studies have noted that IgE is very low at birth, but

increases rapidly in the first five years of life [23,24,52,60].

However, most of these studies have been conducted in North

America or Europe, and most report that IgE is relatively stable

after age five or six without characterizing the degree of stability.

One of the few studies to report detailed age profiles found an

initial increase to age nine, a slight decrease, and then a second

Table 3. Four models comparing age profile parameters among NHANES, Shuar, and Tsimane.

Model 1 Model 2 Model 3

Parameter Unit Estimate SE Estimate SE Estimate SE

b1-intercept 1021 x IU/ml/yr 29.22*** 1.16 29.82*** 1.50 210.13*** 0.96

b1-slope 1021 x IU/ml/yr/ ln(IgE) 2.89*** 0.30 3.03*** 0.37 3.11*** 0.24

b2-intercept 1022 x IU/ml/yr 1.44 0.93 1.26 0.88 1.29t 0.79

b2-slope 1025 x IU/ml/yr/Mean IgE 3.50t 1.83 2.96 2.08 2.52 2.05

b3-intercept 1022 x IU/ml/yr 22.19** 0.82 23.01* 1.48 24.08*** 0.78

b3-slope 1025 x IU/ml/yr/ Mean IgE 28.47t 4.80 25.20 10.33 21.44 1.15

a1-intercept Years 6.55*** .92

a1-slope Years/Mean ln(IgE) 20.37* .15

a2-intercept Years 23.70*** 3.48

a2-slope Years/Mean ln(IgE) 21.70*** .39

a3-intercept Years 46.12*** 5.94

a3-slope Year/Mean ln(IgE) 24.10*** .66

bS (Male) 1021 x IU/ml 6.77*** 1.09 6.84*** 1.10 6.77*** 1.10

bS-slope 1021 x IU/ml/Mean ln(IgE) 20.59* .23 20.61** .24 20.59* .23

a1 (Shuar) Years 3.85*** .42

a1 (NHANES vs. Shuar) Years 1.49* .64

a1 (Tsimane vs. Shuar) Years 20.64t .35

a2 (Shuar) Years 9.85*** 2.34 10.09*** .94

a2 (NHANES vs. Shuar) Years 7.66** 2.89 7.66*** 1.27

a2 (Tsimane vs. Shuar) Years 21.47 1.98 22.08* 1.04

a3 (Shuar) Years 15.92** 5.96

a3 (NHANES vs. Shuar) Years 11.63t 6.65

a3 (Tsimane vs. Shuar) Years 26.21 4.89

All models are non-linear regression models of the form given in the Methods section of this paper. In Model 1 all parameters were entered as functions of population
IgE level. For Models 2 and 3 age parameters were instead entered with population identity interaction terms. In Model 3 a1 and a3 were entered as functions of a2.
Two-sided t-test significant levels:
tp#0.10.
*p#0.05.
**p#0.01.
***p#0.001.
doi:10.1371/journal.pntd.0001218.t003

Table 4. Tsimane helminth prevalences by age group.

Age Group n Hookworm
Ascaris
lumbricoides Strongyloides stercoralis Trichuris trichiura

0–9 1715 41.3% 22.4% 5.9% 3.1%

10–20 838 48.2% 20.9% 6.7% 3.7%

20–30 598 42.5% 20.1% 8.4% 3.3%

30–40 577 44.4% 20.3% 4.0% 3.3%

40–49 607 49.6% 16.8% 3.6% 3.3%

50–59 342 54.1% 16.4% 4.4% 2.9%

60+ 375 53.1% 16.3% 4.3% 2.4%

Total 5,105 45.4% 19.9% 5.6% 3.2%

doi:10.1371/journal.pntd.0001218.t004
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Figure 4. Odds-ratios for Tsimane helminth infection by age relative to the Tsimane population as a whole. Odds-ratios were estimated
with generalized additive models with a binomial logit link function. Shading shows the 95% confidence interval for the odds-ratio. All age functions
were significant at p,0.001, except the age function for T. trichiura, which was non-significant.
doi:10.1371/journal.pntd.0001218.g004
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peak at age fifteen in Croatian children [61]. The shape of the

increase, with an initial peak and then a second peak, is

remarkably similar to the age profiles seen in this study for the

NHANES and Shuar sample. Our results suggest that IgE does

reach an initial plateau between ages three and five, but continues

to increase slowly before reaching higher peaks at age seventeen in

the U.S, age ten in the Shuar, and age seven in the Tsimane. It is

important to note that although we report the peaks for simplicity,

the overall shape of the pattern is more important than the peak

itself. This includes a faster rate of increase at an earlier age, an

earlier peak, and an earlier decline to adult levels.

The age-patterns we report in this study are consistent with

mathematical models for what is known as the peak shift [1,2,62].

The peak shift model predicts that immunity will develop earlier in

populations with higher exposure and transmission rates and

subsequently decline earlier as cohorts acquire partial immunity.

The peak shift hypothesis was formulated with regard to helminth

infections. Typically, helminth infections peak just before or

during adolescence [1,4,5,22]. Although data on helminth

infections was only available for one of our three populations,

we suggest that the IgE levels and peak ages reported in this study

for Shuar and Tsimane are likely the consequence of high

helminths loads since helminths are a primary cause of elevated

IgE in rural populations. The IgE patterns reported also match

expectations from helminth infections. The lack of helminth data

for the NHANES participants may also not be much of a

limitation, as what studies exist support the assumption that

helminths among US residents are likely to be much less prevalent

than among either Shuar or Tsimane. There are few recent

estimates, but in 1972 Warren estimated that 4.0 million

Americans were infected with A. lumbricoides, 2.2 million with T.

trichiuris, 0.7 million with hookworm, and 0.4 million with S.

stercoralis [63]. Given the US population in 1972, these are

prevalences of 1.9%, 1.0%, 0.3%, and 0.2% respectively. Hotez

revises Warren’s estimate for S. stercoralis to a current estimate of

68–100,000 or 0.05% of the 2008 population [64]. Similarly, of

216,275 stool samples sent to state laboratories in 1987, only 0.8%

were positive for A. lumbricoides, 1.2% for T. trichiuris, 1.5% for

hookworm, and 0.4% for S. stercoralis [65]. A similar study

examined 2,896 samples sent to state laboratories in 2000 and

found that 0.4% were positive for A. lumbricoides [66]. These

estimates are clearly much lower than the prevalences we report

for Tsimane and the prevalences reported for other ethnic groups

living near the Shuar, enough so that the exact prevalence is not

critical for interpreting our findings.

Due to TH2 biasing, total IgE may be a better index of total

helminth load than specific IgE levels. However, the lack of

parasite-specific IgE in these data sets is also a limitation in that we

cannot state how much parasite-specific IgE contributes to total

levels. It may be that Shuar and Tsimane differ less in the total

helminth prevalences than they do in prevalences of particular

helminth species. Using helminth infection data for the Tsimane

we were able to examine associations between helminth species

and total IgE. We found that the overall age-pattern for IgE in the

Tsimane resembled the age-pattern for A. lumbricoides infection. A.

lumbricoides infection was associated with higher IgE levels in

children age 3–10, but with lower IgE levels in 11–20 year-olds.

These data suggest that this species may contribute more to the

age-pattern of IgE than others. Hookworm and Strongyloides

infection were also associated with higher IgE in the overall

sample, but showed less age-pattern in association. Future studies

will need to investigate this in more detail by examining specific-

IgE and extending into other populations.

The association between IgE and A. lumbricoides is consistent

with other studies showing that total IgE is correlated with specific

IgE to A. lumbricoides [14]. The positive association between A.

lumbricoides and IgE in participants under age ten and the negative

association after age ten may also suggest that IgE conveys partial

Figure 5. Association between helminth infection and IgE levels by Tsimane age group. Y-values are the regression coefficients from
linear models with lnIgE as the dependent variable and infection status for all four parasites entered simultaneously, to control for coinfection status.
Models were run separately for each age group indicated. Parameter significance: * p#0.05, ** p#0.01, *** p#0.001.
doi:10.1371/journal.pntd.0001218.g005
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immunity to A. lumbricoides [67,68]. Other studies that [69] have

failed to find increased resistance with higher IgE may have not

taken this age-pattern into account.

Other parasites, such as Plasmodium falciparum, also raise total IgE

levels [70]. However, malaria is unlikely to be an important factor

for the populations studied in this paper. Although malaria is

present in parts of Shuar territory, it is not present in the villages

where the data for this paper were collected, and very few

individuals in the area report having had it. Malaria also appears

to be absent from the Tsimane territories, with no Tsimane

reporting malaria in extensive health interviews.

Finally, in all three populations IgE levels were higher in males.

Although noted in many studies (e.g., [23]), the reason for this sex

difference is not entirely clear. The only significant sex difference

in helminth infections was in A. lumbricoides, with slightly more

women being infected. Due to the higher IgE in males, it is

tempting to hypothesize that this is due to increased resistance in

males. However at present this is merely supposition. It is just as

likely that Tsimane women are infected more frequently because

they spend more time in direct contact with children, who

themselves have the greatest number of A. lumbricoides infections.

In addition to its importance for theoretical models describing

the epidemiology of infections, an understanding of the age

patterning of IgE may have public health implications. In

populations with higher parasite transmission rates, exposure

triggers an elevation of IgE at earlier ages. More rapid and heavy

investment in earlier immunocompetence may be favored with

high exposure, even at the expense of other investments, such as

growth. In Shuar children high IgE levels are associated with

increased stunting [18]. It seems plausible that insults to growth

may be most pronounced in populations in which peak infection

rates occur during critical growth periods, such as early

adolescence. Additionally, the timing of infection may affect the

development of immune function in other ways, for example by

affecting the TH1/TH2 balance, with consequences for the later

development of allergy [71]. Although these hypotheses remain to

be tested, they suggest that interventions might be developed with

the specific goal of shifting infection peaks toward less critical ages.
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Predictors of C-reactive protein in Tsimane’ 2 to 15 year-olds in lowland Bolivia.

Am J Phys Anthropol 128: 906–913. doi:10.1002/ajpa.20222.

33. Vasunilashorn S, Crimmins EM, Kim JK, Winking J, Gurven M, et al. (2010)
Blood lipids, infection, and inflammatory markers in the Tsimane of Bolivia.

Am J Hum Biol 22: 731–740. doi:10.1002/ajhb.21074.
34. Tanner S, Leonard WR, Mcdade TW, Reyes-Garcia V, Godoy R, et al. (2009)

Influence of helminth infections on childhood nutritional status in lowland

Bolivia. Am J Hum Biol 21: 651–656. doi:10.1002/ajhb.20944.
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